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Combinatorial Counting - 3.4 - 3.6 Estimates II

How quickly Hn grows? The answer is something like log2 n. But it is not exactly that.

This motivates “Big-O” notation.

Definition: Let f, g be functions N → R. If there exists a constant C > 0 such that |f(n)| ≤ C · g(n) for all
n, then we denote it by f(n) = O(g(n)) or just f = O(g).

Note: C can be quite large! Sometimes defined that |f(n)| ≤ C · g(n) for n sufficiently large.

Rules: If f1 = O(g1) and f2 = O(g2) then

• f1 + f2 = O(g1 + g2)

• f1 · f2 = O(g1 · g2)

1: Use the rules to show (n2 + log(n)) · (14n3 + 2n2 +
√
n) = O(n5).

Solution: We use n2 + log(n) = O(n2 + n2) = O(n2) and 14n3 + 2n2 +
√
n = O(n3 +

n3 + n3) = O(n3). The the product is O(n2 · n3) = O(n5).

2: Prove that the rules are correct.

Solution: Use from definition

Useful estimates

• nα = O(nβ) if α ≤ β

• nC = O(αn) for any C and α > 1

• (lnn)C = O(nα) for any C and α > 0.

Other notation

Notation Definition Meaning

f(n) = o(g(n)) limn→∞
f(n)
g(n) = 0 f grows way slower than g

f(n) = Ω(g(n)) g(n) = O(f(n)) f grows at least as fast as g
f(n) = Θ(g(n)) f(n) = O(g(n)) and f(n) = Ω(g(n)) f and g have roughly similar growth

f(n) ∼ g(n) limn→∞
f(n)
g(n) = 1 f and g are almost the same

Simple estimate for n!:

nn/2 ≤ n! ≤
(
n+ 1

2

)n
Better estimate

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
Almost true

n! ∼
√

2πn
(n
e

)n
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3: Show that n! ≤ en
(
n
e

)n
using induction on n for n ≥ 1. Hint: Use 1 + x ≤ ex for all x ∈ R.

Solution: Base case: n = 1 holds.

Now by induction

n! = n(n− 1)! = n · e(n− 1)

(
n− 1

e

)n−1

= n · e(n− 1)
(n
n

)n(n− 1

e

)n−1

= n · e2
(n
e

)n(n− 1

n

)n
= n · e2

(n
e

)n(
1− 1

n

)n
≤ n · e2

(n
e

)n
e−1

= n · e
(n
e

)n
4: Recall that (

n

k

)
=
n(n− 1)(n− 2) . . . (n− k + 1)

k(k − 1)(k − 1) . . . 1
=

k−1∏
i=0

n− i
k − i

Show that (n
k

)k
≤
(
n

k

)
≤ nk

Solution: First, the upper bound is easy.(
n

k

)
=

k−1∏
i=0

n− i

k − i
≤

k−1∏
i=0

n− i ≤
k−1∏
i=0

n = nk

Now lower bound. we will show that n
k ≤

n−1
k−1 .

n− 1

k − 1
− n

k
=

k(n− 1)− (k − 1)n

(k − 1)k
=

n− k

(k − 1)k
≥ 0

Hence (
n

k

)
=

k−1∏
i=0

n− i

k − i
≥

k−1∏
i=0

n

k
=
(n
k

)k
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5: For n ≥ 1 and 1 ≤ k ≤ n show that (
n

k

)
≤
(en
k

)k
.

Hints: Show that (
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

k

)
≤
(en
k

)k
.

using binomial theorem (1 + x)n and throwing away some parts of it. At good point, use x = k
n .

Solution:

(1 + x)n =
n∑
i=0

(
n

i

)
xi ≥

k∑
i=0

(
n

i

)
xi

1

xk
(1 + x)n ≥ 1

xk

k∑
i=0

(
n

i

)
xi =

k∑
i=0

(
n

i

)
xk−i

Now if we pick x = k
n , we get x < 1 so xk−i ≥ 1 and we get

1

xk
(1 + x)n ≥

k∑
i=0

(
n

i

)
≥
(
n

k

)
We are left with

1

xk
(1 + x)n =

(n
k

)k
·
(

1 +
k

n

)n
≤
(n
k

)k
· en

k
n =

(en
k

)k
6: Show that

2n

n+ 1
≤
(

n

bn/2c

)
≤ 2n

using simple arguments.

Solution:
(

n
bn/2c

)
is less than all subsets, which are 2n.

Because there are n + 1 and the middle is larges, it is at least the average.
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